TC1040

The TC1040 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is primarily intended for high speed applications, up to 1 MBaud, in passenger cars.

Text size - +
Features:
• Fully compatible with the ISO 11898 standard • High speed (up to 1 MBaud) • At least 110 nodes can be connected • Very low ElectroMagnetic Emission (EME) • Transmit Data (TXD) dominant time-out function • Input levels compatible with 3.3 V and 5 V devices • Very low-current standby mode with remote wake-up capability via the bus • Bus pins protected against transients in automotive Environments • Bus pins and pin SPLIT short-circuit proof to battery and ground • Transceiver in unpowered state disengages from the bus • Over temperature protection
Mechanical Data:
• SOP8 package • Molding compound flammability rating: UL 94V-0 • Packaging: Tape and Reel • RoHS/WEEE Compliant
Applications:
• Automotive • Industrial process control • Transportation • Field Transmitter & Sensor Networks

Absolute Maximum Rating

SYMBOL

PARAMETER

CONDITIONS

MIN.

MAX.

UNIT

VCC

supply voltage

no time limit

-0.3

+6

V

operating range

4.75

5.25

V

VTXD

DC voltage on pin TXD

-

-0.3

VCC + 0.3

V

VRXD

DC voltage on pin RXD

-

-0.3

VCC + 0.3

V

VSTB

DC voltage on pin STB

-

-0.3

VCC + 0.3

V

VCANH

DC voltage on pin CANH

0 < VCC < 5.25 V; no time limit

-27

+40

V

VCANL

DC voltage on pin CANL

0 < VCC < 5.25 V; no time limit

-27

+40

V

VSPLIT

DC voltage on pin SPLIT

0 < VCC < 5.25 V; no time limit

-27

+40

V

Vtrt

transient voltages on pins CANH, CANL and SPLIT

according to ISO 7637;

-200

+200

V

Vesd

electrostatic discharge voltage

Human Body Model (HBM)

pins CANH, CANL and SPLIT

all other pins

-

-6

-4

-

+6

+4

-

kV

kV

tPD(TXD-RXD)

propagation delay TXD to RXD

VSTB = 0 V

40

255

ns

Tvj

virtual junction temperature

note 3

-40

+150

Tstg

storage temperature

-

-55

+150

 

Characteristics(VCC = 4.75 to 5.25 V, Tvj = -40 to +150 ℃and RL = 60 Ω unless specified otherwise. 

Parameter

Symbol

Conditions

MIN

TYP

MAX

UNIT

Supply (pin VCC)

supply current

ICC

standby mode

8

17

25

μA

normal mode

recessive; VTXD = VCC

dominant; VTXD = 0 V

 

2.5

30

 

6.5

50

 

10

70

 

mA

mA

 

Transmit data input (pin TXD)

HIGH-level input voltage

VIH

-

2

-

VCC+0.3

V

LOW-level input voltage

VIL

-

-0.3

-

+0.8

V

HIGH-level input current

IIH

VTXD = VCC

-5

0

+5`

μA

LOW-level input current

IIL

normal mode; VTXD = 0 V

-100

-160

-300

μA

Standby mode control input (pin STB)

HIGH-level input voltage

VIH

-

2

-

VCC+0.3

V

LOW-level input voltage

VIL

-

-0.3

-

+0.8

V

HIGH-level input current

IIH

VSTB = VCC

-1

0

+1

μA

LOW-level input current

IIL

VSTB = 0 V

-

0

-10

μA

Receive data output (pin RXD)

HIGH-level output voltage

VOH

standby mode;

IRXD = -100 μA

VCC-1.1

VCC-0.7

VCC-0.4

V

HIGH-level output current

IOH

normal mode;

VRXD = VCC - 0.4 V

-0.1

-0.4

-1

mA

LOW-level output current

IOL

VRXD = 0.4 V

2

5.5

12

mA

Common-mode stabilization output (pin SPLIT)

output voltage

VO

normal mode;

-500 μA < IO < +500 μA

0.3VCC

0.5VCC

0.7VCC

V

leakage current

|IL|

standby mode;

-22 V < VSPLIT < +35 V

-

0

5

μA

Bus lines (pins CANH and CANL)

dominant output voltage

VO(dom)

VTXD = 0 V

pin CANH

pin CANL

 

3.2

0.7

 

3.9

1.2

 

4.3

1.8

 

V

V

matching of dominant output

voltage (VCC - VCANH - VCANL)

VO(dom)(m)

-

-100

0

+150

mV

differential bus output voltage

(VCANH – VCANL)

VO(dif)(bus)

VTXD = 0 V; dominant;

45 Ω < RL < 65 Ω

1.5

-

3.0

V

VTXD = VCC; recessive;

no load

-50

-

+50

mV

recessive output voltage

VO(reces)

normal mode; VTXD = VCC;

no load

2

0.5VCC

3

V

standby mode; no load

-0.1

0

0.1

V

short-circuit output current

IO(sc)

VTXD = 0 V

pin CANH; VCANH = 0 V

pin CANL; VCANL = 40 V

 

-40

40

 

-42

41

 

-95

100

 

mA

mA

recessive output current

IO(reces)

-27 V < VCAN < +32 V

-2.5

-

+2.5

mA

differential receiver threshold voltage

Vdif(th)

-12 V < VCANL < +12 V;

-12 V < VCANH < +12 V

normal mode (see Fig.7)

standby mode

 

 

0.5

0.4

 

 

0.7

0.8

 

 

1.0

1.15

 

 

V

V

differential receiver hysteresis voltage

Vhys(dif)

normal mode;

-12 V < VCANL < +12 V;

-12 V < VCANH < +12 V

50

80

160

mV

input leakage current

ILI

VCC = 0 V;

VCANH = VCANL = 5 V

-5

2

+5

μA

common-mode input resistance

Ri(cm)

normal mode

15

27

35

 

 

standby mode

15

27

35

differential input resistance

Ri(dif)

standby or normal mode

25

35

75

Timing characteristics; see Fig.9

delay TXD to bus active

td(TXD-BUSon)

normal mode

25

35

110

ns

delay TXD to bus inactive

td(TXD-BUSoff)

-

10

60

95

ns

delay bus active to RXD

td(BUSon-RXD)

-

15

55

115

ns

delay bus inactive to RXD

td(BUSoff-RXD)

-

35

70

160

ns

propagation delay TXD to RXD

tPD(TXD-RXD)

VSTB = 0 V

40

-

255

ns

TXD dominant time-out

tdom(TXD)

VTXD = 0 V

300

575

1000

μs

dominant time for wake-up via bus

tBUS

standby mode

0.75

2.2

5

μs

delay standby mode to normal mode

td(stb-norm)

normal mode

7

10

12

μs

Thermal shutdown

shutdown junction temperature

Tj(sd)

-

155

165

180

Note:

1. All parameters are guaranteed over the virtual junction temperature range by design, but only 100% tested at 125 ℃ ambient temperature for dies on wafer level, and in addition to this 100% tested at 25 ℃ambient temperature for cased products; unless specified otherwise. For bare dies, all parameters are only guaranteed with the backside of the die connected to ground.

Product manual update

Ang for product manual electronic pdf format, please make sure your computer
is equipped with corresponding reading software.

Download the name Download
TC1040 download